Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan-Min Liu, Chun-Yan Liu* and Ai-Guo Meng

Department of Pharmaceuticals, North China Coal Medical Colledge, Tangshan 063000, People's Republic of China

Correspondence e-mail: chyliu2004@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.056$
$w R$ factor $=0.157$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,1'-Ethylenebis(4-aminopyridinium) dibromide

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Br}^{-}$, the molecule has a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond and a mirror plane passes through the amino N atom, the attached C atom, the ring N atom, and the linking chain C atom; the Br anion lies on a position of site symmetry m. The two pyridyl rings are parallel to each other.

Comment

N -(2-Bromoethyl)pyridinium cations and 1,1'-ethylenebispyridinium dications are potential sources of N-vinylpyridinium cations via base-catalysed elimination reactions (Katritzky \& Rubio, 1983). Bunting et al., (1992) have conducted research on the elimination reaction of $1,1^{\prime}$-ethyl-enebis(4-aminopyridinium) dibromide, (I), in an aqueous base medium. Here we report the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. The molecule has a centre of symmetry at the mid-point of the C6-C6(1-x, $-y, 1-z)$ bond and a mirror plane passes through atoms C1, N2 and C6. Atom Br1 lies on a position of site symmetry m. The two pyridyl rings are parallel to each other. The bond $\mathrm{N} 1-\mathrm{C} 1$ is short enough [1.325 (12) \AA] to indicate significant double-bond character. The planar geometry around the amino N atom suggests strong conjugation with the π-system of the pyridyl ring. The $\mathrm{N}^{+} \ldots \mathrm{N}^{+}$distance in (I) is 3.740 (1) \AA, similar to the value previously reported (ca $3.75 \AA$) in the 1,2 -bis(pyridinium) ethane dication (Loeb \& Wisner, 1998). The bond lengths and angles are unexceptional. The molecular structure is stabilized by an intermolecular N $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond (Table 1).

Figure 1

View of the structure of the cation of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The bromide ions have been omitted for clarity. [Symmetry codes: (A) $x,-y, z$; (B) $1-$ x. $-y, 1-z$; (C) $1-x, y, 1-z$.]

Received 25 February 2006
Accepted 5 March 2006

Experimental

1,1'-Ethylenebis(4-aminopyridinium) dibromide was prepared according to the method of Bunting (1992). Single crystals suitable for analysis were grown by evaporation of an ethanol solution.

Crystal data

```
\(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4}{ }^{2+} .2 \mathrm{Br}^{-}\)
\(M_{r}=376.11\)
Monoclinic, C2/m
\(a=13.121\) (4) A
\(b=6.4876\) (19) \(\AA\)
\(c=8.406(2) \AA\)
\(\beta=104.023(5)^{\circ}\)
\(V=694.2(4) \AA^{3}\)
\(Z=2\)
```


Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.214, T_{\text {max }}=0.350$
1850 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.157$
$S=1.11$
758 reflections
52 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.799 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1061 reflections
$\theta=3.2-26.2^{\circ}$
$\mu=5.83 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.32 \times 0.22 \times 0.18 \mathrm{~mm}$

758 independent reflections
638 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.2^{\circ}$
$h=-16 \rightarrow 14$
$k=-8 \rightarrow 7$
$l=-10 \rightarrow 7$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0778 P)^{2}\right. \\
&+6.17 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.93 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.83(8)$	$2.70(8)$	$3.516(3)$	$166(7)$
Symmetry code: (i) $-x+\frac{1}{2},-y-\frac{1}{2},-z$.				

Atom $\mathrm{H} 1 A$ was located in a difference Fourier map and refined freely; the final $\mathrm{N} 1-\mathrm{H} 1 A$ bond length is $0.83(8) \AA$; the $U_{\text {iso }}(\mathrm{H})$ value was set equal to $1.5 U_{\mathrm{eq}}(\mathrm{N})$. Other H atoms were positioned geometrically and constrained to ride on their parent atoms $[\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic and $0.97 \AA$ for CH_{2} groups, with $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The maximum residual electron-density peak is located $0.87 \AA$ from atom Br1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bunting, J. W., Toth, A. \& Kanter, J. P. (1992). Can. J. Chem. 70, 1195-1203.
Katritzky, A. R. \& Rubio, O. (1983). J. Org. Chem. 48, 4017-4021.
Loeb, S. J. \& Wisner, J. A. (1998). Angew. Chem. Int. Ed. 37, 2838-2840.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

